QUANTITES DE MATIERE

Calculer un nombre de molécules

Restituer ses connaissances ; effectuer un calcul.

Une goutte d'eau contient une quantité de matière $n = 2.1 \times 10^{-3} \text{ mol d'eau.}$

- Exprimer puis calculer le nombre de molécules d'eau contenues dans la goutte.
- 3 Calculer un nombre de molécules

 $N = n \times N_{\star} = 2.1 \times 10^{-3} \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1}$ = 1.3×10^{21} molécules d'eau.

Calculer une masse molaire ionique

| Mobiliser ses connaissances.

Les ions hydrogénocarbonate HCO3 et les ions sodium Na+ sont présents dans le sang.

- 1. Pourquoi peut-on considérer que la masse molaire ionique de l'ion sodium Na⁺ est égale à la masse molaire atomique du sodium Na?
- Exprimer, puis calculer, la masse molaire ionique de I'ion hydrogénocarbonate HCO3.

Données

Élément	Н	С	0
M (g⋅mol ⁻¹)	1,0	12,0	16,0

5 Calculer une masse molaire ionique

- 1. La masse des électrons étant négligeables devant celle de l'atome, on peut considérer que la masse molaire d'un ion monoatomique est égale à celle de l'élément correspondant.
- **2.** $M(HCO_3^-) \approx M(HCO_3) = M(H) + M(C) + 3 \times M(O) = 61,0 \text{ g} \cdot \text{mol}^{-1}$.

6 Comparer des quantités de matière

Faire preuve d'esprit critique.

Les béchers (a) et (b) contiennent respectivement 30,0 g de cuivre et 30,0 g de fer.

 Le bécher contenant la plus grande quantité de matière est-il celui dans lequel le tas de solide est le plus volumineux? Justifier.

Données

6 Comparer des quantités de matière

$$n = \frac{m}{M}$$
 donc $n(Cu) = \frac{30.0}{63.5} = 4.72 \times 10^{-1}$ mol

et
$$n(Fe) = \frac{30.0}{55.8} = 5.38 \times 10^{-1} \text{ mol.}$$

Le bécher contenant la plus grande quantité de matière est donc celui contenant le fer.

Déterminer une masse molaire moléculaire puis une masse

Mobiliser ses connaissances.

On prélève une quantité de matière $n = 2,9 \times 10^{-2}$ mol de vanilline, de formule chimique C₈H₈O₂.

- Calculer la masse molaire moléculaire M de la vanilline.
- En déduire la masse m de vanilline prélevée.

Données

Élément	Н	С	0
M (g⋅mol ⁻¹)	1,0	12,0	16,0

Déterminer une masse molaire moléculaire puis une masse

1. $M(C_8H_8O_2) = 8 \times M(C) + 8 \times M(H) + 3 \times M(O) = 152,0 \text{ g} \cdot \text{mol}^{-1}$. **2.** $m = n \times M(C_8H_8O_3) = 4.4$ g de vanilline.

Calculer une quantité de matière à partir d'un volume de liquide

Restituer ses connaissances ; effectuer un calcul.

Une bouteille contient un volume V = 1,0 L d'acétone.

- Exprimer, puis calculer, la masse m d'acétone contenue dans cette bouteille.
- 2. En déduire la quantité de matière n correspondante.

Données relatives à l'acétone

•
$$M = 58,0 \text{ g} \cdot \text{mol}^{-1} \text{ et } \rho = 790 \text{ g} \cdot \text{L}^{-1}$$
.

1.
$$m = \rho \times V = 790 \text{ g} \cdot L^{-1} \times 1.0 = 790 \text{ g}$$

2.
$$n = \frac{m}{M} = \frac{790 \text{ g}}{58.0 \text{ g} \cdot \text{mol}^{-1}} = 13.6 \text{ mol}.$$

Calculer une concentration en quantité de matière

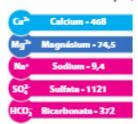
Mobiliser ses connaissances ; effectuer des calculs.

Une solution est obtenue en dissolvant une quantité de matière n = 0,17 mol de glucose dans de l'eau. Le volume de la solution est $V_{\text{solution}} = 100,0 \text{ mL}$.

- 1. Exprimer la concentration en quantité de matière de glucose dans cette solution.
- Calculer sa valeur en mol·L⁻¹.
- 13 Calculer une concentration en quantité de matière

$$\mathbf{1.} C = \frac{n}{V_{\text{collision}}}$$

2.
$$C = \frac{0.17 \text{ mol}}{0.11} = 1.7 \text{ mol} \cdot \text{L}^{-1}.$$


Physique - Chimie Lycée

Déterminer une concentration en masse

Comparer un résultat à une valeur de référence.

Des résultats d'analyses effectuées sur une eau minérale donnent une concentration en ions magnésium égale à 3,1×10⁻³mol·L⁻¹.

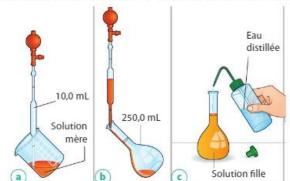
Minéralisation caractéristique (mg/L)

> Étiquette de l'eau minérale

- Déterminer la concentration en masse des ions magnésium dans l'eau minérale à partir des résultats d'analyses.
- La concentration en masse déterminée est-elle en accord avec l'indication qui figure sur l'étiquette?

M(Mg) = 24,3 g·mol⁻¹.

15 Déterminer une concentration en masse


1. $t = C \times M = 3.1 \times 10^{-3} \text{ mol} \cdot L^{-1} \times 24.3 \text{ g} \cdot \text{mol}^{-1} = 7.5 \times 10^{-2} \text{ g} \cdot L^{-1}$. **2.** $t = 75 \text{ mg} \cdot \text{L}^{-1}$: c'est en accord avec l'étiquette (74,5 mg·L⁻¹).

Calculer la concentration d'une solution fille

Extraire et exploiter des informations ; effectuer

Une solution aqueuse a été préparée en diluant une solution de concentration en diiode $C = 0,10 \text{ mol} \cdot L^{-1} \text{ selon}$ les étapes schématisées ci-dessous.

- Calculer le facteur de dilution F.
- En déduire la concentration C' en diiode de la solution diluée.

19 Calculer la concentration d'une solution fille

1.
$$F = \frac{V_f}{V_m} = \frac{250.0 \text{ mL}}{10.0 \text{ mL}} = 25.$$

2.
$$F = \frac{C_m}{C_f} = \frac{C}{C'} \operatorname{donc} C' = \frac{C}{F} = \frac{0,10}{25} = 4,0 \times 10^{-3} \operatorname{mol} \cdot L^{-1}.$$

27 Glycémie à jeun

Extraire et exploiter des informations ; effectuer des

La concentration en glucose $(C_6H_{12}O_6)$ dans le sang, appelée glycémie, permet de diagnostiquer ou de surveiller un diabète. Une glycémie est considérée comme normale si elle est comprise entre 3,5 et $\,$ 6,1 mmol \cdot L $^{-1}$ à jeun. Une personne est diabétique si la valeur de la glycémie est supérieure à 7,0 mmol· L^{-1} à jeun.

- Calculer la masse molaire du glucose.
- L'analyse de sang d'un patient indique une glycémie à jeun de 0,96 g·L⁻¹. Ce patient est-il diabétique?

Glycémie à jeun

$$\begin{aligned} &\textbf{1.} M(C_6 H_{12} O_6) = 6 \times M(C) + 12 \times M(H) + 6 \times M(O) = 180,0 \text{ g} \cdot \text{mol}^{-1}. \\ &\textbf{2.} C = \frac{t}{M} = \frac{0.96 \text{ g} \cdot \text{L}^{-1}}{180 \text{ g} \cdot \text{mol}^{-1}} = 5,3 \text{ mmol} \cdot \text{L}^{-1} < 7 \text{ mmol} \cdot \text{L}^{-1} : \end{aligned}$$

le patient n'est donc pas diabétique.

29 Le dioxyde de carbone dans les boissons

Faire preuve d'esprit critique ; effectuer des calculs.

- Calculer la quantité n₁ de dioxyde de carbone contenue dans un volume V = 600 mLà 20 °C et 1013 hPa.
- La recharge d'un gazéificateur de boisson contient 425 g de dioxyde de carbone dans un volume V = 600 mL.
- Calculer la masse molaire du dioxyde de carbone CO₂.
- En déduire la quantité n₂ de dioxyde de carbone contenue dans cette recharge.
- 3. Comment est-il possible que la recharge contienne une telle quantité de dioxyde de carbone?

 Quand la recharge est considérée comme « vide », que contient-elle? Justifier.

Volume molaire d'un gaz à 20 °C et 1 013 hPa :

$$V_{\rm m} = 24,0 \, {\rm L \cdot mol}^{-1}$$
.

 Masses molaires : M(C) = 12,0 g·mol⁻¹; $M(O) = 16,0 \text{ g} \cdot \text{mol}^{-1}$.

Le dioxyde de carbone dans les boissons

1.
$$n_1 = \frac{V}{V_m} = \frac{0,600 \text{ L}}{24,0 \text{ L} \cdot \text{mol}^{-1}}$$

 $n_1 = 2,5 \times 10^{-2} \text{ mol}$

2.
$$n_2 = \frac{m}{M(CO_2)} = \frac{425 \text{ g}}{44.0 \text{ g} \cdot \text{mol}^{-1}} = 9,66 \text{ mol.}$$

- 3. La recharge contient autant de CO, car la pression est très élevée à l'intérieur.
- 4. Quand on aura utilisé tout le CO2 contenu dans la recharge, celle-ci ne contiendra plus que 600 mL de CO, à pression atmosphérique.

30 Solution commerciale d'éosine

Rédiger un protocole.

L'éosine est utilisée comme solution asséchante. Un flacon contient une solution S de concentration en éosine $C_{\rm S} = 6.0 \times 10^{-2} \, {\rm mol} \cdot {\rm L}^{-1}$.

Pour préparer cette solution S, on dispose d'une solution So de concentration $C_0 = 0.24 \text{ mol} \cdot \text{L}^{-1}$ en éosine qu'il faut diluer.

- **1.** Calculer le volume V_0 de solution S_0 à prélever pour préparer $V_S = 100,0$ mL de solution S.
- Rédiger le protocole de la dilution en précisant la verrerie à utiliser.

30 Solution commerciale d'éosine

1.
$$F = \frac{C_0}{C_s} = 4 = \frac{V_s}{V_0} \operatorname{donc} V_0 = \frac{V_s}{4} = \frac{100,0 \text{ mL}}{4} = 25,0 \text{ mL}.$$

2. Prélever 25,0 mL de solution mère S₀ avec une pipette jaugée et la verser dans une fiole jaugée de 100,0 mL que l'on remplit à moitié d'eau distillée. Boucher et agiter. Ajuster au trait de jauge avec de l'eau distillée puis agiter.

🔰 Dilution d'un berlingot d'eau de Javel

| Élaborer un protocole.

L'eau de Javel est une solution aqueuse contenant, entre autres, des ions hypochlorite $C\ell O^-$. Elle peut être commercialisée en bouteille et en « berlingot ». La notice d'un « berlingot » contenant 250 mL d'eau de Javel indique « verser le berlingot dans une bouteille d'un litre vide et compléter à l'eau froide ».

- Calculer la concentration en quantité de matière des ions hypochlorite dans la solution préparée.
- 2. Comparer cette concentration à celle des ions hypochlorite contenus dans une bouteille commerciale d'eau de Javel.
- Pour utiliser de l'eau de Javel en bouteille lors d'une synthèse, elle doit être diluée 20 fois. Décrire un protocole expérimental permettant d'en préparer un volume $V_S = 50,0 \,\mathrm{mL}$.

- Concentrations en ions hypochlorite :
 - 0,46 mol·L⁻¹ dans un berlingot;
- 0,11 mol·L⁻¹ dans une bouteille commerciale.

31 Dilution d'un berlingot d'eau de Javel

1.
$$F = \frac{V_f}{V_m} = \frac{1000}{250} = 4 = \frac{C_m}{C_f}$$
 donc
 $C_f = \frac{C_m}{4} = \frac{0.46 \text{ mol} \cdot \text{L}^{-1}}{4} = 0.12 \text{ mol} \cdot \text{L}^{-1}.$

- 2. La concentration obtenue à partir du berlingot dilué $(0,12 \text{ mol} \cdot L^{-1})$ est quasiment égale à celle d'une bouteille commerciale (0,11 mol· L^{-1}).
- **3.** $F = 20 = \frac{V_s}{V_b}$ donc volume à prélever de la bouteille :

$$V_{\rm b} = \frac{V_{\rm s}}{20} = 2.5 \text{ mL}.$$

Prélever 2,5 mL de solution mère d'eau de Javel avec une pipette graduée de 5,0 mL et la verser dans une fiole jaugée de 50,0 mL que l'on remplit à moitié d'eau distillée. Boucher et agiter. Ajuster au trait de jauge avec de l'eau distillée puis agiter.